11,731 research outputs found

    Influence of Cooper pairing on the inelastic processes in a gas of Fermi atoms

    Full text link
    Correlation properties in ultracold Fermi gas with negative scattering length and its impact on the three-body recombination is analyzed. We find that Cooper pairing enhances the recombination rate in contrast to the decrease of this rate accompanying Bose-Einstein condensation in a Bose gas. This trend is characteristic for all interval of temperatures T<Tc

    Probing New Physics From CP Violation in Radiative B Decays

    Get PDF
    When new CP-violating interactions are dominated by flavor changing neutral particle exchanges, that may occur in many extensions of the standard model. We examine a type 3 two Higgs doublet model and find that direct CP asymmetries can be as large as about 25% . Time-dependent and time-integrated mixing-induced CP asymmetries up to 85 and 40 %, respectively, are possible without conflict with other constraints. It mainly requirs an enhanced chromo-magnetic dipole b→sgb\to sg decay to be close to the present experimental bound.Comment: 7 pages, latex, no figure

    BCS - BEC crossover and quantum hydrodynamics in p-wave superfluids with a symmetry of the A1 - phase

    Full text link
    We solve the Leggett equations for the BCS - BEC crossover in the three dimension resonance p-wave superfluid with the symmetry of the A1 - phase. We calculate the sound velocity, the normal density, and the specific heat for the BCS-domain (\mu > 0), BEC-domain (\mu < 0), and close to important point \mu = 0 in 100% polarized case. We find the indications of quantum phase - transition close to the point \mu(T = 0) = 0. Deep in the BCS and BEC-domains the crossover ideas of Leggett and Nozieres, Schmitt-Rink work pretty well. We discuss the spectrum of orbital waves, the paradox of intrinsic angular momentum and complicated problem of chiral anomaly in the BCS A1 - phase at T = 0. We present two different approaches to a chiral anomaly: one based on supersymmetric hydrodynamics, another one on the formal analogy with the Dirac equation in quantum electrodynamics. We evaluate the damping of nodal fermions due to different decay processes in superclean case at T = 0 and find that we are in a ballistic regime \omega\tau >> 1. We propose to use aerogel or nonmagnetic impurities to reach hydrodynamic regime \omega\tau<< 1 at T = 0. We discuss the concept of the spectral flow and exact cancellations between time-derivatives of anomalous and quasiparticle currents in the equation for the total linear momentum conservation. We propose to derive and solve the kinetic equation for the nodal quasiparticles both in the hydrodynamic and in the ballistic regimes to demonstrate this cancellation explicitly. We briefly discuss the role of the other residual interactions different from damping and invite experimentalists to measure the spectrum and damping of orbital waves in A-phase of 3He at low temperatures.Comment: 14 pages, 10 figure

    Intercluster Correlation in Seismicity

    Full text link
    Mega et al.(cond-mat/0212529) proposed to use the ``diffusion entropy'' (DE) method to demonstrate that the distribution of time intervals between a large earthquake (the mainshock of a given seismic sequence) and the next one does not obey Poisson statistics. We have performed synthetic tests which show that the DE is unable to detect correlations between clusters, thus negating the claimed possibility of detecting an intercluster correlation. We also show that the LR model, proposed by Mega et al. to reproduce inter-cluster correlation, is insufficient to account for the correlation observed in the data.Comment: Comment on Mega et al., Phys. Rev. Lett. 90. 188501 (2003) (cond-mat/0212529
    • …
    corecore